
High Performance Data Management
- “It's the memory stupid!”

Leveraging system resource characteristics to
efficiently improve performance and predictability

1University of California Santa Cruz

School of Engineering

{kalt, scott, andrea}

@soe.ucsc.edu

Tim Kaldewey 1,2 Andrea di Blas 1,2

Scott Brandt 1 Eric Sedlar 2

Oracle Corporation

Server Technologies – Special Projects

{tim.kaldewey, andrea.di.blas, eric.sedlar}

@oracle.com

2

High Performance Data Management – Bottlenecks

Ping ~40ms
Disk accesses ~15ms

• CPU – GHz
• Disk – up to 15ms latency
• Memory

– Performance – 70ns latency
– Predictability – multi-level caches
– Rapidly growing sizes

3

Memory Matters

1 A. Ailamaki, et al. DBMSs on a modern processor: Where does time go? VLDB’99
2 R. Sites. It’s the memory, stupid! MicroprocessorReport, 10(10),1996
3 K. Schlegel. Emerging Technologies Will Drive Self-Service Business Intelligence. Garter Report 2/08

• Is disk I/O1 still the bottleneck for traditionally data-
intensive applications, e.g. databases1?

• “It's the memory Stupid!” 2

OLTP
 DWH3

<
?

• Growth rates of main memory size
have outstripped the growth rates of
structured data in the enterprise

• Multiple GB main memory DB
put memory performance on the spot

• Isn't memory performance constant ?

4

Memory Performance – Characterization

• Dependent on Access pattern and word size performance differs up to
2 orders of magnitude

100x

32GB data accessed total. Results for a Core i7 2.66GHz, DDR3 1666.

5

Memory Performance – More Characteristics
• Peak performance requires parallel memory access

Throughput with increasing number of threads. 32GB of 64-bit words accessed total.
Results for a Core i7 2.66GHz, DDR3 1666.

6

Peak Memory Performance
• Required level of concurrency depends on the architecture

Throughput with increasing number of threads. 32GB of 64-bit words accessed total.
Results for an 8-core Sun Niagara, DDR2 533.

7

RAM = Random Access memory ?

.

Aspect Performance impact

Access
pattern

 18x sequential vs. random

 What do these results imply?

Data type 16x 128-bit vs. 8-bit words

Parallelism

 2x read vs. write

32x multithreaded vs. serial

Reason

 MTU
= Cache Line

Memory
Controller

8

The (Memory) Wall 4

.
Source: David Yen. Opening Doors to the MultiCore Era. MultiCore Expo 2006

2009: CPU cores

4 W.A.Wulf et al. Hitting the memory wall: implications of the obvious. SIGARCH - Computer Architecture News'95

9

Overcoming the Memory Wall – Traditional Approaches

• Larger caches
– Specialized processors
– TPC-H top10: 6 run10 Itanium

• “Linearize” data structures
– For example matrix multiplication: store 1st matrix row-wise,

2nd column-wise (memory is 1D)

1 2 3

7 8 9

4 5 6

1 4 7

3 6 9

2 5 8

1 2 3 7 8 94 5 6

1 2 3 7 8 94 5 6

XX è

10

Latency & Bandwidth – historical Issues ?

Source: Terabyte Bandwidth Initiative. Craig Hampel - Rambus. HotChips'08

11

Overcoming the Memory Wall – “Newer” Approaches

• Multithreading
– Run multiple (similar) jobs simultaneously è increased throughput

 an extreme example:

 But individual jobs won't get any faster =(

12

Overcoming the Memory Wall – “Revolutionary” Approaches

• New parallel algorithms

 e.g. p-ary search 5,6

5 T. Kaldewey, J. Hagen, A. Di Blas, E.Sedlar. Parallel Search on Video Cards. USENIX Hotchips'09
6 A. Di Blas, T. Kaldewey. Data Monster. IEEE Spectrum 9/09

13

Why Search ?

Honestly, how many times a day do you visit

?

14

Search – A Performance Problem ?

• Large dot-com's server farms handle millions
of queries simultaneously
– High throughput is a “must have”
– Achieved through (massive) parallelism

• What are we waiting for ?
– Network latency
– Response time < sub-second

è At the data source: query < millisecond(s)

Ping ~40ms
Disk accesses ~15ms
App. overhead ?

15

Our Goal

• Improve response time (latency) in the era of throughput oriented
(parallel) computing.

Research Question ?

• How can we (algorithmically) exploit (memory) parallelism to
improve response time (of search)?

16

Binary Search

• How Do you (efficiently) search an index ?

• 1st name = whom
you are looking for ?

• < , > ?
• Iterate

– Each iteration:
#entries/2 (n/2)

– Total time:
è log2(n)

• Open phone
book ~middle

17

Parallel (Binary) Search

• What if you have some friends (3) to help you ?

• Give each of them ¼ *

* You probably want to tear it a little more intelligent than that, e.g. at the binding ;-)

• Divide et impera !

– Each is using binary search takes log2(n/4)

– All can work in parallel è faster: log2(n/4) < log2(n)

– 3 of you are wasting their time !

18

P-ary Search

• Divide et impera !!

...

• It's a sorted list:
– Look at first and last entry of a subset
– If first entry < searched name < last entry

• Redistribute
• Otherwise … throw it away

– Iterate

• How do we know who has the right piece ?

19

P-ary Search

• What do we get
• Each iteration: n/4

è log4(n)

• Assuming redistribution
time is negligible:
log4(n) < log2(n/4) < log2(n)

• But each does 2 lookups !
• How time consuming are

lookup and redistribution ?

+

• Searching a database index can be implemented the same way
– Without destroying anything ;-)

memory
access

synchronization

= =

20

P-ary search - Implementation

• Performance depends on target architecture
– # friends = threads / processor cores / vector

 Iteration 1)

 Iteration 2)

– Redistribution è synchronization cost
pthreads ($$), spinlock($), SIMD/vector (~0)

a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9

P0: g P1: g P2: g P3: g

 P0 P1 P2 P3: g

c d e f g h i j k

21

• Performance depends on data structure
– Sorted lists require multiple lookups or memory gather

è random accesses

P-ary search - Implementation

a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9

P0: g P1: g P2: g P3: g

– Random memory accesses are slow
– Memory gather not (yet) available for vector units (SSE)

22

• Performance depends on data structure
– B-trees group pivot elements

P-ary search - Implementation

d g h i j k o p q r

4 c k s z

5 8 9 a b

6 7

...

P0P1P2P3

P0P1P2P3

– Linear memory accesses are fast
– Nodes can also be mapped to

• Cache Lines (CSB+ trees)
• Vectors (SSE)

23

P-ary Search (SSE) vs. conventional algorithms

Searching a 512MB index with 134mill. 4-byte integer entries. Index stored as 4-wide (16-
wide) B-tree. Results for a Core i7 2.66GHz, DDR3 1666.

24

P-ary Search (multi-core) vs. traditional (multi)-threading

Searching a 512MB index with 134mill. 4-byte integer entries. Index stored as 48-wide B-
tree. Results for a Core i7 2.66GHz, DDR3 1.6 GHz

25

P-ary Search implemented on a GPU

Searching a 512MB index with 134mill. 4-byte integer entries. Index stored as 32-wide B-
tree. Results for a nVidia GTX 285 1.5GHz, GDDR3 1.2GHZ

26

Predictable memory performance

• Measure latency of memory access using “rdtsc”
– random accesses take ~350 cycles
– Sequential accesses are hard to measure

• In a sequence they take ~2 cycles on average
• Intel optimization reference manual states

4 cycle latency for L1
• Applying these results to our search problem we get:

• The average case is much faster
– Not all search keys are found within the last iteration
– Multiple queries in sequence will result in Cache hits

27

Conclusions

• Memory performance can differ by 2 orders of magnitude
dependent on:
– access pattern: random/sequential, read/write
– word size
– concurrency(growing importance)

• Taking memory characteristics into account

– Improves performance
• p-ary search (concurrency, word size)

 works across architectures and data structures
• strcmp (word size)

– Allows to predict performance of memory bound apps
• based on their memory access pattern
• within +/- 5% of the worst case execution time

28

Future Work

• Evaluate p-ary search with
– Wider vectors
– More cores

• Manage system performance for memory bound applications
(databases), i.e. schedule queries
– Based on resource requirements (using available metadata)
– With the “right” level of parallelism for a job

• Graduate soon ;-)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

